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PREFACE

The Elliptic Restricted Three-Body Problem (ER3BP) continues to be

the focus of an increasing level of attention in the scientific

community. Equilibrium points defined within a localized system of

gravitational and centrifugal forces in a rotating three-body system

were the subject of conside.able research during the past 200 years.

More recently, spacecraft orbits near these equilibrium points have

been of great interest; in particular, the ER3BP defined to include a

spacecraft in orbit within the gravitational attractions of the Sun and

the Earth has proven to be of great value in the study of the

solar-terrestrial environment. The addition of solar radiation

pressure to the gravitational and centrifugal iorce structure aiters

the locations and conditions for linear stability of the equilibrium

points in the Sun-Earth ER3BP. (These equilibrium points are also

sometimes referred to as libration points or Lagrange points.) Solar

radiation pressure also consequently affects the spacecraft orbits

computed near these points.

This work explores the generation of bounded orbits in the ER3BP,

and some of the results of adding the solar radiation pressure force to

the ER3BP are presented. The focus is limited to the equilibrium

points defined in the Sun-Earth ER3BP, although extensions to other

systems may be straightforward. One equilibrium point in this

three-body system is located between the Sun and the Earth; orbits near

this point are the primary focus for the study of solar effects on the

terrestrial environment and are therefore the orbits considered here.

This effort is supported by the Frank J. Seiler Research Laboratory and

has been conducted as doctoral research under the direction o:

Professor K.C. Howell, School of Aeronautics and Astronautics, Purdut,

University, West Lafayette, Indiana.
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CHAPTER 1: INTRODUCTION

With the expansion of space exploration programs worldwide,

interest has increased in the design of innovative, complex, and yet

low-cost spacecraft trajectories that meet demanding mission

requirements. In most of the missions flown in the last few decades,

the spacecraft spent the majority of the flight time in a force

environment dominated by a single gravitational field. For tLh,

preliminary mission analysis in these cases, additional attracting

bodies and other forces could be modeled, when required, as perturbing

influences. Analysis of some recently proposed and more adventurous

missions, such as those involving libration point orbits, will require

dynamic models of higher complexity, since at least two gravitational

fields are of nearly equal influence on the spacecraft throughout the

majority of the mission. Thus, trajectories determined for a system

consisting of numerous gravitational forces have been of particular

theoretical and practical interest in recent years.

One type of many-body problem, motion within a three-body system

of forces, has a wide range of applications. The general problem of

three bodies assumes that each body has finite mass and that the motion

is a result of mutual gravitational attraction. When the mass of one

of the three bodies is assumed to be sufficiently small (infinitesimal)

so that it does not affect the motion of the other two bodies

(primaries) in the system, the "restricted three-body problem" results.

The primaries can be further assumed to be moving in known elliptic or

circular orbits about their common center of mass. Therefore, the

elliptic restricted three-body problem, where the primaries are assumed



to be in known elliptic orbits, may be considered a reasonably

approximate model for a spacecraft moving within the gravitational

fields of the Sun and the Earth, for instance.

A. Definition of the Problem

In the formulation of the restricted three-body problem, one mass

is defined as infinitesimal relative to the remaining two masses

(primaries). The primaries, unaffected by the infinitesimal mass, move

under their mutual gravitational attractions. In the elliptic

restricted three-body problem (ER3BP), the primaries are assumed to

move on elliptic paths. If the eccentricity of the primaries' orbit is

assumed to be zero, the circular restricted three-body problcm (CR3BP)

results. Even for known primary motion, however, a general,

closed-form solution for motion of the third body of infinitesimal mass

does not exist. In the restricted three-body problem (ER3BP or CR3BP),

five equilibrium (libration) solutions can be found. These equilibrium

points are particular solutions of the equations of motion governing

the path of the infinitesimal mass moving within the gravitational

fields of the primaries.

The equilibrium points are defined relative to a coordinate system

rotating with the primaries. At these locations, the forces on the

spacecraft are in equilibrium. These forces include the gravitational

forces from the massive bodies and the centrifugal force associated

with the rotation of the system. (The addition of solar radiation

pressure to the force model changes the locations of the five Lagrange

points, although they can still be defined, and these solar radiation

effects will be discussed in the next chapter.) The five libration

points are located in the plane of primary rotation and are depicted in

Figure 1-1 for the CR3BP. Three of the libration points are on the

line between the two massive bodies, and one of these collinear points

2
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is interior to the primaries. The last two points are at the vertices

of two equilateral triangles in the planq of primary rotation. The

triangles have a common base that is the line between the primary

masses.

For the CR3BP, the five libration points are stationary relative

to the rotating reference frame. The approximate relative distances

between the primaries and the five libration points are also given in

Figure 1-1. If the problem is generalized to the ER3BP, the libration

points pulsate as the distance between the primaries varies with time.

In both the circular and the elliptic restricted problems,

two-dimensional and three-dimensional trajectories, both periodic and

quasi-periodic paths, can be computcd in the vicinity of these

libration points.

B. Previous Contributors

The formulation and solution of the equations of motion governing

two or more heavenly bodies moving under the influence of their mutual

gravitational fields have inspired many researchers through the

centuries. The difficulty involved in finding any solution to the

multi-body problem has been fortunate for the development of the

mathematics, science, and engineering methods used in the

investigations. A few of the many significant contributions are

mentioned briefly here. The problem history is described in terms of

the many-body problem, the three-body problem, and then libration point

orbits that include both periodic and quasi-periodic trajectories.

1. The Hany-Body Problem

Even the simplified two-body problem successfully investigated by

Johanness Kepler was not, in fact, simple to solve. Kepler's laws Gf

planetary motion, published between 1609 and 1619, did not account fei
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the masses of the two planets and assumed that the planets move on

elliptical paths about the Sun. The findings of Kepler were a major

development in that they supported the heliocentric theory, which

documented evidence suggests was first postulated by Aristarchus of*

Samos in Ancient Greece and then rediscovered by Nicholas Copernicus

(1473-1543).

Sir Isaac Newton (1642-1727) was first to formulate the many-body

problem as three or more massive particles moving under their mutual

gravitational attractions. Other researchers, including Kepler, had

proposed the concept of the inverse square law of gravitation, but

Newton's many scientific discoveries included his recognition that

the inverse square law of gravitation was the fundamental law of

celestial mechanics. However, even with the planets modeled as point

masses, finding any solution to the problem involving three or more

bodies is nontrivial.

Leonhard Euler (1707-1783) showed that ten integrals of the motion

(ten constants of integration) exist in the many-body problem. Six of

these scalar constants result because total linear momentum is

conserved. Three of the scalar constants of integration result from

the conservation of total angular momentum. The tenth constant is due

to the conservation of total mechanical energy of the system of bodies.

Euler was the first to use mathematical methods, rather than the

accepted geometrical approaches of his time, to solve problems in

dynamics, and he is therefore widely considered to be the father of

analytical dynamics. Many years later, Henri Poincar& (1854-1912)

significantly concluded, along with others, that no additional

integrals exist in the many-body problem if three conditions hold: (1)

the integrals of the motion are equations involving only integral or

algebraic functions of the coordinates and velocities of the bodies in

question, (2) they are valid for all values of the masses, and (3) they

satisfy the equations of motion. Poincar& had extended and generalized

the work of H. Bruns whose findings were published in 1887 and

described specific necessary conditions for the existence of integrals

of the motion for the general problem of three bodies.

5



The set of differential equations governing moLion in the

many-body problem includes a second-order vector differential equation

for each body. When n bodies are defined, 3n second-order scalar

differential equations result. In order to completely specify the

motion of these n particles, 6n constants of integration are required.

Since Euler showed that 10 integrals exist and Poincar6 proved that

only the 10 (with certain restrictions on form) can exist, a three-body

problem that requires 18 constants of the motion would thus defy

general closed-form solution. By eliminating time as the independent

variable and by using an "elimination of the nodes" method originally

developed by Carl Gustav Jacobi (1804-1851), the many-body problem may

be reduced to order 6(n-2). The general three-body problem would still

have six unknown constants of the motion. It is intriguing that the

general three-body problem looks deceptively similar to the general

two-body problem, yet the general problem of three bodies is of a much

higher degree of complexity and does not have a general closed-form

solution.

2. The Three-Body Problem

The three-body problem has long been a rich research area in

celestial mechanics. Newton studied and found some approximate

solutions to the general problem of three bodies. In 1765, Euler

solved the problem of three massive bodies that maintain a constant

ratio of their relative distances from each other and move on a fixed

straight line. Later, Joseph-Louis Lagrange presented his particular

solutions of the general three-body problem in 1772. Lagrange, a

student and friend of Euler, found five equilibrium (libration) points

in the general three-body problem. These five libration points are

thus also referred to as Lagrange points. Pierre-Simon de Laplace

repeated Lagrange's analysis in his works published between 1799 and

1825. Joseph Liouville (1809-1882) studied the Sun-Earth-Moon

three-body problem in particular. Liouville investigated the

6



instability of the three-body configuration and the effects of

disturbing forces on the Moon's motion. He proved that the collinez

libration (or Lagrange) points are unstable points of equilibrium. The

two t-iangular points have been found to be linearly stable for certain

ratios of the primary masses and for certain values of primary orbit

eccentricity. George W. Hill also studied the notion of the Moon in

the Sun-Earth-Moon system and published his theory of lunar motion in

1378.

The "restricted" problem of three bodies has been of great

research interest in the last 100 years. Poincar6 was apparently the

first researcher to coin the term "restricted" to refer to the problem

in which the infinitesimal mass is assumed to have no elfect on the

movement of the finite masses. The primary masses may be assumed to be

in either circular or elliptic orbits, and the motion of the

infintesimal mass in the vicinity of a Lagrange point can then be

studied.

3. Libration Point Orbits

In this section, a brief historical background of libration point

orbital research is presented. Then, one goal of the continuing

scientific investigations concerning libration point orbits in the

Sun-Earth system is discussed. The third part of this section

describes several planned missions in the Sun-Earth system. The final

two subjects discussed are periodic (h:tlo) and quasi-periodic

(Lissajous) orbits, respectively.

a. Historical Background

Libration point orbits have been the subject of considerable

research interest. Poincar& completed significant work on bounded

periodic orbits that were two-dimensional (orbits of his first and

7



second kind) in the CR3BP and the ER3BP (respectively) and that were

three-dimensional (orbits of his third kind) in the CR3BP. He looked

at families of periodic orbits indexed by the ratio of the mass of the

smaller primary to the sum of the primary masses. Works by Sir George

Howard Darwin (son of Charles Darwin) in 1899 and 1911 investigatc! the

circular restricted three-body problem. His studies included the

stipulations that the infinitesimal mass remained in the plane of

motion of the primaries and that one primary was ten times as massive

as the other. [1,2  Da-win numerically calculated a number of periodic

orbits in the planar CR3BP. (Of course, numerical integration

computations at that time were highly labor-intensive.) Karl Frithiof

Sundman obtained a general solution using convergent series for the

general problem of three bodies in 1912, but the slowness of

convergence made it of little practical value. [S3 4  Henry Crozier

Plummer published works in 1903 and 1914 concerning approximate

analytic solutions to the planar CR3BP. [15- ]  Forrest Ray Moulton

described the problem in his 1914 book and analyzed a great variety of

periodic orbits and approximate analytic solutions in the planar CR3BP

in 1920. [7,81

Several additional scientific discoveries and research

accomplishments in this century helped to spur interest in libration

point orbits. Until the early twentieth century, investigations

concerning the five Lagrangian points had been considered interesting

but purely academic. It had seemed highly unlikely that such

unusual planetary formations could exist in nature. Then, in 1906, a

small planet in the Sun-Jupiter three-body system was found to be

moving in close proximity to one of the triangular libration points.

This small planet is named Achilles and is one of the Trojan asteroids

that now have been found to number approximately 25. Before the 1950s,

solutions were also constrained to hand calculations and analytic

approximations. A 1966 book by Victor Szebehely thoroughly summarized

the evolution of efforts to understand the three-body problem to that

date. Until then, most of the work of generating solutions had been

limited to two-dimensional orbits in the plane of motion of the



primF-ies. Within the past 30 years, high speed, electronic computing

devices helped make more accurate numerical solutions possible and

enabled the study of three-dimensional trajectories.

More recently, the discovery of other objects orbiting in the

vicinity of libration points has also helped to increase interest.

Analysis of data from the Voyager 1 spacecraft found that two of

Saturn's moons complete the Saturn-Dione A-Dione B equilateral triangle

solution for that three-body system. The two moons are the same

distance from Saturn, and the much smaller Dione B slowly oscillates

near a point that remains some 60 ahead of Dione A as the moons orbit

around Saturn. Some meteoric dust particles are also suspected to be

orbiting near the triangular libration points in the Earth-Moon

system.14',9  In the Sun-Earth system, the collinear libration point on

the dark side of the Earth may be the location of meteoric dust

particles that can be seen to reflect light from the setting

Sun. 4,7 ,9 ]  The discoveries of, and speculations about, these natural

formations located in the vicinity of Lagrange points, and the

increasing capabilties of electronic computers, have facilitated

interest in orbits for artificial satellites near these points.

The circular or elliptic motion of the primaries, as modeled in the

CR3BP or ER3BP, may be considered a good orbital approximation. The

orbit of a planet about the Sun or the orbit of the Moon about the

Earth is approximately Keplerian, and the spacecraft can easily be

considered an infinitesimal mass in comparison. The study of libration

point orbits in such systems is gaining in significance because the

positioning of spacecraft n!ar Earth-Moon or Sun-Earth libration points

can be of value to meet a number of objectives. Earth-Moon equilateral

libration points have been studied for potential stationing of space

colonies and transportation relay stations. The translunar libration

point in the Earth-Moon system has also been proposed as the location

of a communications relay satellite to support a lunar exploration base

on the far side of the Moon. The Sun-Earth interior libration point is

a site of great interest for upstream investigation of solar effects on

the Earth. One mission, the International Sun-Earth Explorer-3,

9



successfully conducted such scientific research while in a libration

point orbit for nearly 4 years. Scientific interest, then, continues

to motivate Sun-Earth libration point trajectory studies; in part,

because solar activity has some remarkable--and damaging--influence on

the Earth's atmosphere.

b. One Objective of Sun-Earth Libration Point Orbital Missions

One important goal of some Sun-Earth libration point orbital

research is to study solar effects on the terrestrial environment. The

ceaseless solar wind contains a constant stream of particles stripped

from the Sun; however, it is the unexpected solar storms that do the

greatest amount of harm on Earth. The unpredictable solar eruptions

release sudden surges of particles into the solar wind, and the

particles reach the Earth some 4 days later (they travel at

apprcximately 1.5 million kilometers per hour). [101  The surge in

particles can cause a geomagnetic storm that upsets delicate

electronics and that can damage electrical supply systems. Changes in

the Earth's magnetic field (caused by the geomagnetic storm) can induce

quasi-direct currents in high-voltage alternating current transmission

lines and can thus damage transformers. In March 1989, a surge of

particles hit the areas near the North Pole a ,d caused a blackout in

Canada's province of Quebec and the shutdown of a nuclear power plant

in New Jersey. Two hundred electrical utilities were in some measure

affected by this solar storm.

Significantly, there are additional major terrestrial changes as a

result of the unpredictable solar storms. Increased solar radiation

also causes the Earth's outer atmosphere to expand. The outer

atmospheric expansion, in turn, increases the drag on some satellites,

thus degrading their attitude control and changing their orbital

tracks. In 1989, the United States Air Force Space Command temporarily

lost track of approximately 1,400 space objects for up to several weeks

as increased drag due to solar-induced terrestrial atmospheric

10



expansion changed their previously-predicted paths. The

solar-induced atmospheric expansion near the Earth has also caused the

Soviet Salyut 7 space station to plunge to Earth in 1991, some 3 years

early. The Soviets had boosted it to a higher orbit from where it

should have continued orbiting until approximately the year 1994;

however, the increased atmospheric drag changed its orbital path and

caused it to begin an uncontrolled tumble.

Unfortunately, these solar storms are not well predicted.

Ground-based solar storm warning systems are inadequate; in fact,

currently only 14% of the storms are preceeded by an accurate warning,

and the existing warning system provides a 78% false alarm rate.110 1

One of the several objectives of future libration point orbit research

in the Sun-Earth system could then be the study of solar storms and the

potential use of storm warning spacecraft. Positioning of a warning

spacecraft near the Sun-Earth interior Lagrange point will allow about

an hour's notice of an incoming solar storm.

c. Some Missions Planned in the Sun-Earth System

Future spacecraft missions will increase scientific knowledge of

the solar-terrestrial environment and are planned as collaborative

efforts of several agencies. The National Aeronautics and Space

Administration (NASA), the European Space Agency (ESA), and the

Institute of Space and Astronautical Science (ISAS) in Japan are the

major participants, with some minor involvement of thL. United States'

Department of Defec:e (DoD), in this solar-geospace research. [ill

Several planned mlss,), ,: 1.%3 part of the joint International

Solar-Terrestrial Physics (1'flf) program. A mission designated as WIND

is scheduled for launch on December 22, 1992; following a 2-year

double-lunsc swingby trajectory, WIND will be injected into a libration

point orbit betweeni the Earth and the Sun in January 1995. 112] The

Solar and Heliospheric Observatory (SOHO) Mission is currently
(12]scheduled for launch on March 14, 1995. 50OH0 will be placed into

11



orbit near the libration point between the Earth and i.he Sun, and its

related scientific research activities are planned to continue for 6

years.

Other missiens, coordinated with and scientifically complementing

the vehicles in the libration point orbits, will be launched in the

next decade, as well. A set of four spacecraft called CLUSTER will be

located in polar Ear,' bits at the same time that SOHO is in its

libration point . CLUSTER will provide complementary
[11)

solar-terrestrial e .,, rom inside the Earth's magnetosphere.

A NASA-controlled mis ton, POLAR, is planned for injection into a

northern Earth polar orbit in order to take measurements of the

magnetosphere. GEOT.'" an ISAS-controlled mission, is planned to

primarily study the g% xtingnetic tail. A joint NASA/DoD mission, the

Combined Release and Radiation Effects Satellite (CRRES), is planned to

be in an Earth Drbit in order to investigate the near-Earth plasma
il1]

sheet and the outer Van Allen belt. Numerous specific missions are

also being planned for launch into libration point orbits after the

turn of the century. Scientific interest in libration point orbits of

various sizes and shapes, tailored to bpecific missions, will thus

continue to increase.

d. Halo O Its

Three-dimensional, periodic "halo" orbits in the vicinity of the

collinear libration points have been studied since the late i960s.

Early work concerning these orbits was motivated by studies related to

exploring the far side of the Moon. These studies were completed in

support of the planned Apollo 1C lunar exploration mission that was

later canceled. Robert Farquhar coined the term "halo" to describe a

three-dimensional, periodic orbit near a libration point on th: far
113]

side of the Moon in the Earth-Moon system. These orbits were

designed to be large enough so that the spacecraft would be constantly

in view )f the Earth and would thus apptar as a halo around the Moon.

12



A communications station in this type of orbit could maintain constant

rontact between the Earth and a lunar experimentation station on the
[14)

far side of the Moon.

Interest in these periodic, three-dimensional orbits has

continued. Since the late 1960s, a number of researchers have produced

approximate analytic, as well as numericaily integrated, solutions that

represent three-dimensional, periodic halo orbits in the restricted

three-body problem; some have also conducted suability studies on many

families of such orbits. [1 5-221  In the CR3BP, precisely periodic halo

paths can be constructed, and the orbital symmetry of the constructed

trajectory can be fully exploited to facilitate the numerical

computations. However, in the ER3BP. orbital construction is more

difficult, and halo-type orbits that are not perfectly periodic may

result.

An orthographic projection of approximately one revolution of a

halo-type orbit in the Sun-Earth ER3BP is depicted in Figure 1-2. This

view of the orbit is only one of the three possible orthographic

depictions of a three-dimensional orbit, and it is included here for

illustrative purposes--the actual orbits used in this research will be

fully described in the following chapter. The orbit is generateo near

the libratic., point located between the Sur and the Earth. This planar

projection is perpendicular to the line between tbe primaries; thus, it

is the view of the orbit as seen when looking towara the Sun from the

Earth. Note that the z coordinate represents out-cf-plan-, notion.

Since the distance between the Sun and the Earth is app,.., .'ly

1.5X10 8  kilometers, the z excursion is relatively small but

significant. Note also that the maximum y excursion for this halo-type

orbit is nearly four times as large as its maximum z excursion.

A recently successful mission in which the spacecraft moved on a

halo trajectory about a libration point between the Earth and the Sun

has helped spur continuing interest in libration point orbits. On

August 12, 1978, a scientific spacecraft named th,: International

Sun-Earth Explorer-3 (ISEE-3) was launched toward a halo orbit near the

interior Sun-Earth libration point. It remained in orbit for nearly 4

13
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years to measure solar wind characteristics and for the study of other

solar-induced phenomena such as solar flares upstream of the Earth.

Measurements associated with these processes could be made at the

interior Lagrange point approximately 1 hour before any disturbance

reached the terrestrial environment. Concurrently, the ISEE-l and

ISEE-2 missions measured similar characteristics from Earth orbit in

order to complete a comparative study. Future missions planned as part

of the upcoming ISTP program are being designed to continue the

investigation of the solar-terrestrial environment.

e. Lissajous Orbits

Quasi-periodic orbits near libration points are also currently of

great research interest. One orthographic view of several revolutions

of a Lissajous orbit constructed near the interior libration point in

the Sun-Earth ER3BP is depicted in Figure 1-3. This is the view of the

orbit as seen when looking toward the Sun from the Earth. This single

view of the three-dimensional Lissajous orbit is included for

illustrative purposes and for a comparison with the halo-type orbit

depicted in Figure 1-2. Note that the z excursions of the two orbits

are comparable; yet, the maximum y excursion of the Lissajous path is

only approximately one-fourth that of the halo-type orbit.

The variations in size and shape that a quasi-periodic orbit can

exhibit may add valuable flexibility for mission planning. This type

of bounded, three-dimensional libration point trajectory is called a

Lissajous orbit since specific planar projections of these

quasi-periodic trajectories may look like a special type of "Lissajous"

curve. Physicist Jules Antoine Lissajous (1822-1880) investigated

curves that were generated by compounding simple harmonic motions at

right angles, and he delivered a paper on this subject to the Paris

Academy of Sciences in 1857. Nathaniel Bowditch of Salem,

Massachusetts, had conducted some similar work in 1815. Lissajous

curves have a wide variety of shapes that depend on the frequency,
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phase, and amplitude of the orthogonal components of the motion. [23,241

When the in-plane and the (orthogonal) out-of-plane frequencies of the

linearized motion are nearly (but not) equal, the resulting path is

typically called a Lissajous trajectory.

A method to generate approximations for this type of

quasi-periodic orbital path was developed analytically by Farquhar and

Kamel in 1973. They derived a third-order approximate analytic

solution for a translunar libration point orbit in the Earth-Moon ER3BP

that also included solar gravity perturbations. In 1975, Richardson

and Cary then developed a fourth-order analytic Lissajous approximation

in the Sun-Earth+Moon barycenter system. The notation "Earth+Moon"

indicates that the Earth and the Moon are treated as one body with mass

center at the Earth-Moon barycenter. In consideration of the lunar

perturbation, Farquhar has shown that the accuracy of solutions in the

Sun-Earth CR3BP can be enhanced if the collinear libration points are

defined along the line between the Sun and the center of mass of the

Earth and the Moon. [171 Since 1975, a few researchers have considered

methods to numerically generate Lissajous trajectories, but the lack of

periodicity of a Lissajous path complicates numerical construction of

bounded trajectories. Howell and Pernicka have developed a numerical

technique for determination of three-dimensional, bounded Lissajous

trajectories of arbitrary size and duration. [12,26-301

C. Overview

This next chapter considers the research results and briefly

discusses the following topics: coordinate systems, equations of

motion, locations of the five Lagrange points, linearization of the

equations in order to compute the state transition matrix, and

construction of bounded orbits near the equilibrium points. Follow-on

studies (not presented here) can then be used to conduct tracking and

control scheme simulations, incorporating the solar radiation pressure

force, for a spacecraft in such an orbit.
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CHAPTER 2: RESULTS

In this chapter, the elliptic restricted three-body problem and

the associated coordinate systems are reviewed; the equations of motion

for an infinitesimal mass moving in the gravity fields of two massive

bodies are then derived. Locations of the libration points are

discussed, and then the computation of the state transition matrix and

the construction of bounded nominal orbits near the collinear Lagrange

points are summarized.

A. Elliptic Restricted Three-Body Problem

The elliptic restricted three-body problem is a simplification of

the general problem of three bodies. In the general three-body

problem, each of the three bodies is assumed to be a particle of finite

mass and, thus, exerts an influence on the motion of each of the other

bodies. Neither the general nor the restricted problem of three bodies

has a general closed-form solution. However, when problem

simplifications are made, particular solutions can be determined. If

the mass of one of the bodies is restricted to be infinitesimal, such

that it does not affect the motion of the other two massive bodies

(primaries), the restricted three-body model results. The primaries

are assumed to be in known elliptic (ER3BP) or circular (CR3BP) orbits

about their common mass center (barycenter). The problem can then be

completely described by a single second-order vector differential

equation with variables appropriately defined for a specified

coordinate frame.
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B. Coordinate Systems

The two standard coordinate systems used in the analysis of this

problem have a common origin at the center of mass (barycenter) of the

primaries. Primaries with masses mI and m2 such that m1 ? are

assumed here, although this distinction is arbitrary. The

infinitesimal mass Is denoted as m . These masses (m,m2,m)

correspond to particles situated at points PI P?2, and P3

respectively. The barycenter is denoted as "B," and the resulting

arrangement is shown in Figure 2-1. The rotating coordinate system is

defined as xYRzR, and the inertial system is identified as xyz.

Note that both coordinate systems are right-handed, and the x and y

axes for both systems are in the plane of motion of the primaries. The

xI axis is, of course, assumed to be oriented in some fixed direction;

in this specific formulation of the problem, it is assumed to be

parallel to a vector defined with a base point at the Sun and directed

toward periapsis of the Earth's orbit. The rotating x axis is definedR

along the line that joins the primaries and is directed from the larger

toward the smaller primary. The z axes are coincident and are directed

parallel to the primary system angular momentum vector. The yR axis

completes the right-handed xRyRzR system.

C. Equations of Motion

Newtonian mechanics are used to formulate the equations of motion

for m3 (the spacecraft) relative to B as observed in the inertial

reference frame. The sum of the forces on m resulting from both the

gravity fields of masses m (the Sun) and m (the Earth-Moon

1 2
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barycenter) and from the solar radiation pressure can be used to

produce the following second-order vector differential equation:

m m kS
p= - G C d - G ( ) + (-) d. (2-1)

d3r3 d3

The overbar denotes a vector, and primes indicate differentiation

with respect to dimensional time. All quantities are dimensional, as

appropriate, and the quantity "G" is the universal gravitiational

constant. The scalars "d" and "r" in equation (2-1) denote the

magnitudes of the vectors 3 and F, respectively, as depicted in

Figure 2-1. The dimensionless scalar "k" is the solar reflectivity

constant, and "S" is the solar radiation pressure constant. The

formulation of the solar radiation force model and the values for the
(31]

solar radiation constants are derived from p-evious work by Bell.

The numerical values for these constants are selected from

characteristic data for ISEE-3; however, they should also approximately

model a vehicle such as SOHO in the International Solar-Terrestrial

Physics Program:

2
AS r

0 0
, cm0(2-2)cm3

3

where k = 1.2561, S = 1352.098 kg/sec 3 , r = 1.4959787x108 km, c = the0 0

speed of light = 2 .998xi0 8 m/sec, A = surface area of the spacecraft's
2

sun-facing side 3.55 m , and m = mass of the spacecnaft = 435 kg.3

The constant S is the solar light flux measured at one astronomical
0

unit (A.U.), and r is the nominal distance associated with the
(311

measurement of the solar flux S . The value of A, also termed the0
effective cross-sectional area of the spacecraft, is considered to be

constant in this work. The constant k is a material parameter
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dependent on the absorptivity of the spacecraft surface and is

generally confined to a range of 0 s k : 2.0. [31]

The position vector p is written in rotating components as

pxx +y + Z (2-3)

where x , yRz R are unit vectors. The velocity and the acceleration of

the spacecraft (particle P with mass m ) relative to the barycenter B3 3

as observed in the inertial reference frame can then be derived by

using the basic kinematic expressions

-,-I -R I-R -p=p = p + 0 x p, (2-4)

and

" -" IR I-R - (P p + W xp (2-5)

where the superscript "i" denotes the inertial reference frame, the
-"IR

superscript "R" indicates the rotating reference frame, p denotes
-1I

the time derivative of p in equation (2-4) taken with respect to the
I--R

rotating frame, and W is the angular velocity of the rotating

reference frame relative to the inertial frame. The symbol 'x

indicates a vector product.

Assuming an elliptic primary orbit and a known time of periapsis

passage for the primary orbit, two-body orbital mechanics can be used

to determine the position of P in its orbit at any given time. In the2

standard two-body problem, the angular displacement of d from2

periapsis is defined by the angle 0 as depicted in Figure 2-1.

Clearly, the angle 0 in this particular formulation is also the angular

displacement of the rotating reference frame relative to the fixed

inertial system.
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Hence, the angular velocity of the rotating frame relative to the

inertial direction is written

W Z'. (2-6)

Using equations (2-3) -nd (2-6) in equation (2-4), an expression for

the velocity of P can be obtained:3

P = R (y'+ 'x) A + (2-7)

Then, using equations (2-6) and (2-7) in equation (2-5), the following

kinematic expression for p" can be derived:

(2 ,, +2 ,2 A ,,A
(x"-O"y-20'y'-0'X)x 'R(y+O"x+20'x'-O yyR+ z . (2-8)

Notice that equation (2-8) includes terms with the angular

velocity, 0'(t), and angular acceleration, 0"(t), of the rotating

reference frame with respect to the inertial frame. By using known

elliptic orbital elements, readily computed expressions for 8' and 6"

can be found. For instance, the magnitude of the specific angular

momentum vector can be computed by using a vector equation that

includes 0':

- A =- -=RA A ,A 20 Ah z x z = R x x (R x + ROYR R O'z (2-9)

where the vector v is the orbital velocity of the smaller primary, P2,

in its elliptic orbit, as observed in the fixed frame. For the

elliptic two-body orbit, the varying distance R between the primaries
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is given by

R = R(t) = a (1 - e cos(E)), (2-10)

where "e" is the eccentricity, "E" is the eccentric anomaly, and "a" is

the semi-major axis of the primary orbit.

For any orbit, the semi-latus rectum, p, is expressed

p = h2/ G (m + m ). (2-11)1 2

For any conic orbit that is not a parabolic path, p can also be written

p = a(l - e)2 = a(l-e)(l+e). (2-12)

Using equations (2-11) and (2-12), an expression for h can be found:

h = /a(l-e)(l+e) G(m + m 2). (2-13)1 2

Hence, using equations (2-9), (2-10), and (2-13), the angular rate, e',
can be computed as

%a/l-e)(l+e) vG(m +m)

0 h 1 2 (2-14)
R a (0 - e cos(E))2

Equation (2-14) includes, however, the angle "E" that varies with

time. Therefore, the expression for the angular acceleration, 0", will
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necessarily include E', for which a relationship in terms of known

orbital elements must be found. An equation that relates the eccentric

anomaly and the time since periapsis passage is given as

a- ti(m+ in)) (E - sin (E)) (2-15)

where t is the time of periapsis passage. The quantity VG(m + m)/3
p1 m a/

is denoted as the mean motion, n ; that is,
mean

n G/a3 (2-16)

and equation (2-15) can be rewritten as

n (t - t ) = (E- e sin (E)). (2-17)
mean. p

Equations (2-15) or (2-17) can be used to derive a mathematical

relationship involving the time derivative of E and other known orbital

elements. Equation (2-17) will later prove to be quite useful in
determining the angle E if both the time, t, and the time of periapsis

passage, t , are known. Differentiating equation (2-15) with respect
p

to time produces

IG(m,+m )/a

El 2 (2-18)
a(1-e cos(E))
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Taking the time derivative of equation (2-14) and using equation

(2-18), the angular acceleration of the rotating reference frame

relative to the inertial frame can be computed as

-2G(m +m 2)V(1-e)(U+e) e sin(E)
e = 2.(2-19)

a J (1 - e cos(E))
4

Then equations (2-1), (2-2), (2-8), (2-14), (2-15), and (2-19)

comprise the governing set of equations for motion of the infinitesimal

mass wPthin the force environment of the Earth+Moon (m2) and the Sun

(m ), including the solar radiation pressure force. Note that equationI
(2-15) is listed here. Equation (2-15), or its mathematical equivalent

(2-17), known as Kepler's equation, is used to compute the angle E when

the time since periapsis passage is known. Of a number of different

procedures, Newton's method for finding the zeros of a function proves

adequate for this purpose in this work; that is, given t and time t,
p

the correct value of the angle E must be computed. Newton's method is

iterative and, in this work, finds the zero of a function defined as

f(E) = n (t - t ) - E + e sin(E). (2-20)
mean p

The algorithm reduces to finding iterative solutions based on the

equation (26)

n (t - t ) - E + e sin(E )

E n E n-I e mean P n-1 n-i (2-21)

1-1 + e coS(En-I
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The iteration process using equation (2-21) is defined as complete

when the condition If(E )I S 10 12 is satisfied. (The symbol 'I I",

of course, indicates that the absolute value is to be taken.) Thus, by

using equation (2-21), the value of the eccentric anomaly, E, at any

time, t, relative to the time of periapsis passage, t , can be
P

calculated and then used in equations (2-14) and (2-19) to determine 0'

and 9".

Three scalar equations of motion for P can be derived using the3

dimensional equations (2-1), (2-2), (2-8), (2-14), and (2-19); howevei.

for convenience, the following scaling factors are typically

introduced:

(1) The sum of the masses of the primaries equals one
mass unit. (m I+ , = 1 unit of mass)

(2) The mean distance between the primaries equals one
unit of distance. (a = 1 unit of distance)

(3) The universal gravitational constant is equal to one
unit by proper choice of characteristic time.
(characteristic time = I/n ; thus G = I unit)

mean

The dimensional equations of motion can be simplified and scaled

by introducing the characteristic quantities defined above and by

introducing the nondimensional mass ratio p, "psuedo-potential" U, and

the scaled solar radiation constant s:

m
2 (2-22)

m+m
1 2

and

U -) + p + 1 2(X2 + y2 ks (2-23)
d r 2 d
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where the dot denotes the derivative with respect to nondimensional

time. The scaled solar radiation constant, s, is derived from the

dimensional radiation constant denoted as S in equation (2-2) and, by

using the characteristic quantities described above, its value is

calculated as s = 6 .206597029461384x1 O-6 nondimensional units. Then,

the vector magnitudes, "d" and "r," are written in terms of scaled

quantities as:

d = [(x + R)2 + y2 + Z2]1/2 ,  (2-24)

r = (x - R + g R)2 + y2 + z2 /2. (2-25)

The three scalar second-order differential equations that result

can be written in terms of characteristic quantities as

2 y=AU + y = U + O Y, (2-26)
ax

+ 2 6x - U -6 x = - x, (2-27)
ay y

z = UU (2-28)
az z

where
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(1-p)(x+Rp) p (x-R+.iR) ks(x+Rp)
U (l + + Oixk (2-29)
x d 3  r3 d3

1-'U)y Ily ksy .

U +-_ + 62y, (2-30)
Y 3  3 3

d3  r d

The scaled equations for the angular velocity and angular

acceleration of the rotating frame relative to the inertial frame also

simplify:

S h V(1-e)(l+e)
- + (2-32)

r (1 - e cos(E))2

-2i(1-e)(1+e) e sin(E)
6= (2-33)

(1 - e cos(E))4

If the primaries are assumed to be moving in a circular orbit,

then 0 = 0, R = 0 = 1, and equations (2-26), (2-27), (2-28) reduce to

three scalar equations in the simplified form:
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2 au ex x (2-34)

+ ~ 8 2-'= a =U(-5

z= a U, (2-36)

where

xd 3r 3d 3 ~ (-7

(l-ji)y Wy ksy
U =--+ -+ y (2-38)

Yd 3 r 3 d.

(l-ji)z Liz ksz

U =- - -- + -_ (2-39)
z3 3 3d r d

The system of equations (2-34), (2-35), and (2-36) admits an

integral of the motion that was originally found by Jacobi:

2 .2 *2
J =2U -x - y - z = constant. (2-40)
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In addition to offering special insight into the CR3BP, Jacobi's

constant can be used as a check during numerical integration of the

equations of motion; however, it is not a constant in the ER3BP.

The scalar equations (2-26), (2-27), and (2-28) corresponding to

the elliptic restricted problem or equations (2-34), (2-35), and (2-36)

derived for the circular restricted problem can be used to locate the

five libration points in the rotating reference frame

D. Locations of the Lagrangian Points

By using scalar equations (2-34), (2-35), and (2-36) for motion in

the CR3BP, the locations of the stationary equilibrium points can be

determined. Equations (2-26), (2-27), and (2-28) can be used to

determine rat'os of distances that are constant in the ER3BP. These

ratios are related to the locations of libration points that oiav. been

defined in the ER3BP and that "pulsate" with respect to the rotating

reference frame as the distance between the primaries varies withi time.

1. The CR3BP

In the CR3BP, the five libration points are equilibriim points and

are stationary with respect to the rotating coordinate fame, that is,

they are locations at which the forces on the third body sum to zero.

The arrangement of points and the corresponding nondimensional

distances are depicted in Figure 2-2. Note that three of the libration

points (L , L, L3) are collinear with the primaries; one collinear

point (L ) is interio, to the primaries. The rz aining two points (L
I 4

and L ) are located at the vertices of two equilateral triangles that
S

are in the plane of primary rotation and that have a common base

between the primaries.
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Figure 2-2. Lagrange Point Locations in the Scaled CR3BP.
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In the CR3BP, the libration points are stationary in the rotating

coordinate frame. Stationary points are defined as points at which the

relative velocity and acceleration are zero, such that

x = y= Z 0y~ . (2-41)

Using equations (2-41) in equations (2-34) through (2-39), the useful

conditions U = U = U = 0 are found. The three collinear libration
x y z

points can be readily located by further noting that y = z = 0 for the

points located on the rotating x axis.R

Then, the remaining equation that allows conditions on the

coordinate x to be found is (2-37). For the collinear libration

points, equation (2-37) then reduces to

U = 0 0(i-) (x+P) A(x-(1-)) + ks(x+p) (2-42)
x d3  r 3 d3

By substituting the appropriate coordinates into equation (2-42) for

each of the three collinear Lagrange points, the locations of the three

points can then be individually determined.

However, before deriving the equations that are used to locate

each of the libration points, the values of the constants used to solve

equation (2-42) are noted here. The value of W used in this work is

3.0404234945077 x 10-6 (consistent with the Sun/Earth+Moon system).

The characteristic distance equals the semi-major axis of the primary

orbit; that is, a = 1.4959787066 x 10a kilometers. When the solar

radiation pressure force is included in the model, the values of the

nondimensional constants include the values of k = 1.2561 and

s = 6.206597029461384 x 10-6 scaled units. Also, note that when the

constants "k" or "s" are defined to be zero, equation (2-42) reduces to

the equation derived for the CR3BP without the solar radiation force;

it may be useful and interesting to compare the positions of the
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collinear points 'ith and without solar radiation pressure forces

included in the model. First, however, it is appropriate to briefly

discuss the selection of the parameter values used in this solar

radiation pressure model.

The values chosen for computation of the solar radiation preszure

force deserve special discussion here because they have a minor, yet

important, impact on several of the numerical results. The computation

of the solar radiation pressure constant S is described in equation

(2-2). (The scaled solar radiation pressure constant is denoted as s.)

The values of the parameters used in that equation are selected from

research by Bell 311 using post-flight data for the ISEE-3 mission near

Lagrange point L . Certainly, many factors can affect the accuracy of1

this solar radiation pressure approximation. The orientation of the

spacecraft may alter the area of its Sun-facing side (the variable A in

equation (2-2)), and the position of the spacecraft at a libration

point other than L may require modification of at least the variable1

r in equation (2-2).

The value 1.2561 chosen for the solar reflectivity constant k

conforms with other research s 7, s9, 801 concerning ISEE-3; yet, it too

is clearly an approximation. The values used in these works for ISEE-3

include estimated values for k of 1.20 and 1.30; also, using actual

flight data for ISEE-3, the constant k was at times treated as a

solved-for parameter. While its value varied widely during flight,

some of the solved-for values at various epochs were 1.258, 1.261, and

1.260. [59,801 (It may be interesting to note that the reflectivity

properties of any spacecraft surface may change with age, that is, with

time on station, due in part to possible particulate impacts and solar

radiation.) Early work by Bell used a k value of 1.2561; this is the

nominal value of k used to generate the reference trajectories for the

orbit determination error analysis and station-keeping studies in this

work. More recent work by Bell includes a k value of 1.20. The

results of using this smaller value of k when determining the locations

of the Lagrange points will be included in the next few paragraphs.
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The positive constant XI is the distance between the smaller

primary mass and the libration point L as depicted in Figure 2-2. For1

libration point L, x = L = 1 - - 71 (see Figure 2-2), and the

following quintic is derived from equation (2-42):

(3- )X+ (3-2p) - (ti+ks)z 2 + 2 1 - 1 = 0. (2-43)

The nondimensional position of L relative to P in the CR3BP can1 2

be determined by finding the single real root of equation (2-43), which

for this problem with k = 1.2651 has a value X1 = .01001184941667781.

When solar radiation pressure is not included, the position of L1 is

determined by the value 71 = .01001097733285880. Hence, the position

of Lagrange point L moves approximately 130.46188 kilometers closer to1

the Sun (m at P ) when solar radiation pressure forces are included in1 1

the circular model. Bell (31] computes a value of 124.60 kilometers for

the change in the position of L if the solar radiation pressure force1

with k = 1.20 is included.

For libration point L2, x L2 = 1 - P + 72 (see Figure 2-2), and

the following quintic is derived from equation (2-42):

+(3-p)r' + (3-20)d - (p-ks)- - - = 0. (2-44)
22 2 2 2

When solar radiation pressure forces with k = 1.2561 are included in
the model, the location of Lagrange point L2 is defined by the

nondimensional value 72 = .01007738021243130. When solar radiation

pressure is not included, the position of Lagrange point L is
2

calculated as 2 = .01007824054648482. Hence, the location of L2 in

the CR3BP moves approximately 128.70414 kilometers closer to the Sun

when solar radiation pressure forces with k = 1.2561 are included in
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(31J
the model. Bell computes a value of 122.90 kilometers for the

change in the position of L if "hle solar radiation pressure force with2

k = 1.20 is incorporated. (Note that solar radiation pressure forces

may not actually influence a spacecraft in an orbit that remains on the

dark side of the Earth, that is, in the Earth's shadow. In fact, the

size and shape of the orbit will be reflected in the magnitude of the

solar radiation force on the spacecraft near L .)2

For libration point L3 , x = L3 = - 1 - y3 (see Figure 2-2), and

the following quintic is derived from (2-42):

5 +(2+11)z4 +(1+2)3_ (1-_-ks)2_ (2_2p_2ks)z (1 Opks) = 0. (2-45)

When solar radiation pres3ure with k = 1.2561 is included in the force

model, the location of Lagrange point L is determined as3

73 = .9999956277060894 in nondimensional units. Without solar

radiation pressure, the location of L is calculated as3

73 = .9999982264196291. Hence, the location of L3 in the CR3BP moves

approximately 388.762012 kilometers closer to the Sun when solar

radiation pressure forces are included in the model.

The addition of the solar radiation pressure force then causes the

location of the Lagrange point to move closer to the Sun for all three

collinear libration points. It would also be logical to question how

solar radiation pressure forces affect the locations of the remaining

two Lagrange points. The existence and locations of the triangular

Lagrange points when solar radiation pressure forces are included may

be valuable, but such an investigation is not part of this effort. The

focus here now turns to the locations of the Lagrange points in the

ER3BP, which is the dynamic model used for this work.
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2. The ER3BP

Five libration points also exist in the ER33P, but they are not

stationary relative to the rotating frame; rather, the collinear points

pulsate along the x axis, and the triangular points pulsate relativeR

to both the xR and the yR axes as the distance between the primaries

varies with time. The equilibrium solutions can be located by using

equations (2-26) through (2-31) to find ratios of certain distances

that are, in fact, constant in the problem. The collinear libration

points in the ER3BP can be found by assuming x * 0, x # 0, and y = y

= y = z = 0.

With these restrictions on the coordinates of the collinear

points, equation (2-27) reduces to

2 Ox + 6 x = 0. (2-48)

Also, equations (2-26) and (2-29) combine to produce

(1-[i)(x+Ri) p(x-R+ R) ks(x+Rp) 2(-

x-+ + x, (2-49)
d r 3 d3

where d = x + R , (2-50)

r = x - R + R I (2-51)

R = 1 - e cos(E). (2-52)

Equations (2-48) and (2-49) can be combined to provide one

equation written in terms of the coordinate, x, of a particular
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collinear Lagrange point. Solving for x in equation (2-48) results in

-Ox (2-53)

20

Expressions for 0 and 0 must be substituted into equation (2-53).

Using equations (2-32), (2-33), and (2-52), equation (2-53) simplifies

to

e sin(E) x e sin(E) xx =-(2-54)
(l-e cos(E))

2  R2

The derivative of equation (2-53) with respect to nondimensional time

produces the equation

2e cos(E) -e x (2-55)

R3  R

for which the scaled version of equation (2-,8), that is

E= - (2-56)
R

is required.

Using equations (2-32) and (2-55) in equation (2-49), the term

(x - 02x) reduces to
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6_x)_ X -1 (2-57)
R R 2

Finally, using equation (2-57) in equation (2-49), an expression for

the x coordinate associated with any of the three collinear Lagrange

points in the ER3BP can be derived:

X d 3r3+ (C-l)(- + )r3_ A( _ X(2-_))d3+ ks(-- + )r 3= 0. (2-58)
R rR +R R

Expressions for x as a function of 'I (corresponding to each collinear

libration point) can then be substituted into (2-58) to find numerical

values for 71 2, and 7 . For the ER3BP, these expressions are

x = LI = R C 1 - - - ), (2-59)

x = L = R C 1 - + 72), (2-60)
2 2

x=L = R(- -3 ). (2-61)
33

The relative locations of the Lagrange points in the ER3BP are depicted

in Figure 2-3.

When equation (2-59), (2-60), or (2-61) is substituted into

equation (2-58), equations (2-43), (2-44), or (2-45), respectively,

result. Therefore, the relative positions of the collinear libration

points can be calculated from the same three quintics that were solved

in finding the locations of the collinear points in the CR3BP. The

locations of the three points can then be calculated at any time by
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]-- -.

x=L 1 =R(I-9-71)

x L3  RL2

= R(-i- Y3 ) x = L2 = R(1-ui+ Y2)

Figure 2-3. Lagrange Point Locations in the Scaled ER3BP.
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substituting the appropriate numerical values of ,2, and X3 into

equations (2-59), (2-60), and (2-61), respectively. Although X are

constants, the locations for the collinear points on the rotating x

axis vary with time because R(t) is time-varying. "Lhe value of e used

in these calculations is .01671173051.

For this work, equation (2-59) is used to determine the position

of L relative to the barycenter, B; it is also used to transform the

numerically integrated data from rotating coordinates with origin at

the libration point to rotating coordinates centered at the barycenter.

E. State Transition Matrix

For determination of an acceptable nominal trajectory, as well as

orbit determination error analysis investigations and station-keeping

studies, it is required that the state transition matrix be available

at predetermined but varying time intervals along the nominal path.

The transition matrix is derived in connection with a linearizing

analysis.

The equations of motion for the infinitesimal mass in the ER3BP

can be linearized about a reference trajectory (nominal path) that is a

solution of the differential equations. The states, three position and

three velocity, and the state vector x are defined as

x = x, x = y, x = z , x = x, x5 = y, x = z, (2-62)

and

= [xI, x, x3, x4, x s, x 6 (2-63)

The reference trajectory is defined as .REF Therefore, using a

Taylor's series approach, the expansion about the reference path is
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written in the form of the fi-st-order variational equation

d
T(x) x= At) ( 2-64)
dt

where x = x - x is understood to be the vector of residuals relative
REF

to the nominal solution, and the matrix A(t) contains the first-order

terms in the Taylor's series expansion of the equations of motion about

the nominal or reference solution of interest.

Using equations (2-26) through (2-31), At) can be expressed as

A~t) = ~(2-65)

Urr+69 20

where all four submatrices are dimension 3x3 and

[Uxx Uxy Uxz]

Urr =Uyx Uyy Uyz (2-66)

_LzX Uzy UzzJ

with

[0101
Q= -1 0 0.

0001
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The entries of the symmetric matrix Urr are given by

2
ks+p-1 11 3(l-p-ks)(x+Rlp) 3(:-(-,)

UXX= - -+ 0 ++
33

d r dr

2 2
ks+ji-1 p + 3(l-p-ks)y' 3py (-~

Uyy - - + 0+ -

35
d r dr

ks+p-l 1 p 3(1-p-ks )Z2 JPZ (2-69)
Uzz= -

d r3 d 5 r'

UX=3(1-p-ks)(x+Rp)y 4 p(x-R(l-p))y (2-70'

Ux=3(1-p-ks)(x+Rp)z +3p(x-RI(I-p))z (2-71)

d 5

uv 3(1-p-ks)yz +3pyz (2-72)

The matrix AMt can then be evaluated along the reference Lrajcctory

The vector dlifferential equation (2-64) governing lite :i

variations fr-om 11w nominal path has a solution of the form
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x(t) = 0(t,t ) x(t ) (2-73)

where '(t,t o) is the state transition matrix at Lime "t" relative to

time "t ." The matrix 0, then, represents the sensitivities of the
0

states at time "t" to small changes in the initial conditions. It is

determined by numerically integrating the matrix differential equation

d_ (D(t, to = (t t ) = A Mt (( ,t L (2-74)

dt 0 0 0

with initial conditions 0(tO, t ) = I, the 6x6 identity matrix. Thus,

the nonliiear equations of motion in (2-26) through (2-28) and the

matrix equaticn (2-74) combine to result in 42 first-order differential

equations that can be simultaneously integrated numerically to

determine the state vector and its associated transition matrix at any

instant of time. The reference trajectories that are of interest in

this research are generated by a numerical integration method that uses

a differential corrections process developed by Howell and

Pernicka.(12 ,26- 30) The orbits include solar radiation pressure forces

as formulated by Bell 131 specifically for an orbit associated with the

interior Lagrange point in the Sun-Earth system. The numerical

integration routines used in this work are fourth- and fifth-order
1321

Runge-Kutta formulas available in the 386-Matlab software package.

F. Bounded Orbits Near Libration Points

The computation of bounded periodic and quasi-periodic orbits in

the vicinity of libration points has been of increasing interest during

the past 100 years. The accomplishments of loincar& (1854-1912)

include a significant body of work on famili,-; of bounded periodic
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orbits in the planar CR3BP, the planar ER3BP, and the three-dimen3iono

ER3BP. During the time per od 1913 to 1939, Professor Elis Str6mgre',

and others at the Copenhagen Observatory computed a family of bounde!

periodic orbits for j=.50 near a collinear libration point in th.

planar CR3BP. Other researchers have constructed two-dimensionai

and three-dimensional bounded periodic and quasi-pei iodic orbits nea:

Lagrange points; some have investigated stable periodic orbits in 'h.
(1, 2, 5-8, 12-22, 2 -1

vicinity of the collinear libration points.

This section first discusses the stability of the libration points

in the CR3BP and then the ER3BP. The construction of bounded orbits

near the collinear Lagrange points is then summarized. Finally, the

specific reference trajectories used in the orbit determination error

analysis and station-keeping studies in this work are introduced.

1. Stability of the Libration Points in the CR3BP

The accomplishments of those researchers who have constructed

bounded orbits near collinear libration points are particularly

significant because the collinear points are considered "unstable"

points of equilibrium but with (only) one mode producing positive

exponential growth. Bounded motion in their vicinity, therefore, Is

determined by deliberately not exciting the unstable mode. A second

mode produces negative exponential orbital decay and is also

deliberately not excited. In the CR3BP, the remaining four eigenvalues

are purely imaginary. The existence of initial conditions that result

in only trigonometric (sinusoidal) functions as solutions means that

the collinear libration points, while unstable, possess conditional

stability (with proper choice of initial conditions) in the linear
(91

sense.
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The instability of the collinear libration points can be

demonstrated by looking at a specific example formulated in the CR3BP.

Earlier in this chapter, the equations of motion in the ER3BP were

linearized about a nominal path to give the first-order variational

equation (2-64) that includes the Jacobian matrix A(t). The entries of

the matrix A(t) are then defined in equations (2-65) through (2-72).

These equations can be simplified by assuming the CR3BP is valid;

hence, 0 = 0 and R = 0 = 1. Also, if the stability of the collinear

points is to be determined, the reference solution can now be the

(stationary) libration point of interest in the CR3BP. Under the

assumptions of the CR3BP and the libration point reference solution,

the Jacobian matrix A(t) is constant and can be denoted as the constant

matrix A; stability measures such as eigenvalue analysis can then be

accomplished.

For this analysis, the vector x represents relatively small

variations from a particular libration point of interest (L.). The

linear variational equation consequently may be written as

x = A x (2-74)

where x = [a [3 x o 1 ]T and A is the constant Jacobian matrix. In

order to compute the constant matrix A, nondimensional collinear

libration point coordinates (x ,0,0) for the C113BP are substitutedL|

into the matrix A. (The matrix A(t) is given by equations (2-65)

through (2-72), and, under the assumptions that the CR3BP is valid and

the given libration point is the nominal solution, it reduces to the

constant matrix A.) The matrix A will obviously be numerically

different for each of the five libration points of interest.
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The following iree linear equations result:

=2 + (2B+1) c (2-75)

= (2-B)3 - 2 a (2-76)

= (-B)z (2-77)

where

1-p+ks g
B - + , (2-78)

[xLI] 3  
[xLI+ -13'

and xLI represents the nondimensional coordinate of the collinear

libration point of interest. The variational equation for the

out-of-plane component 7 decouples from the in-plane equations and

represents pure oscillatory motion. The equations in terms of a and

produce the characteristic equation

A4 + (2-B)A2 + (1+B-2B 2 0 (2-79)

with roots that depend on the sign of (2-B+2B2). For the three

collinear Lagrange points, the sign of this term is negative for all

values of the mass ratio such that Ozpz.5. Consequently, the

characteristic equation (2-79) has roots that include a purely

imaginary pair and a real pair, opposite in sign. The solution of the

linear variational equations (2-75), (2-76), and (2-77) !or any of the

collinear points then shows unbounded motion (exponential growth) in

response to arbitrary initial conditions. The benefits of selecting
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specific initial conditions to avoid exciting the unbounded exponential

modes will be discussed later in this section. But first, a short

paragraph discussing stability of the triangular Lagrange points in the

CR3BP is included because the discoveries of natural satellites

orbiting near triangular libration points has helped spur the current

substantial interest in libration point spacecraft orbits.

The triangular libration points are marginally stable in the

linear sense for a specific range of primary mass ratio in the CR3BP.

Purely imaginary roots in two conjugate pairs are obtained for 11S.0385,

which is given here to four decimal places and is sometimes referred to

as Routh's value. [4  The mass ratios (listed here to three decimal

places), for example, in the three-body systems of the Earth-Moon

(p = 1.216 x 10-6), Sun-Earth+Moon (p = 3.022 x 10-6 ) and Sun-Jupiter

(A = 9.485 x 10-4 ) all satisfy the mass ratio requirement for marginal

stability of the triangular points in the linearized model. Natural

satellites, such as the Trojan asteroids or a moon of Saturn, occupy

linearly stable orbits near triangular libration points in their

respective systems.

2. Stability of the Libration Points in the ER3BP

Several researchers have analyzed the stability of the libration

points in the elliptic problem, where both the mass ratio, p, and the

primary orbit eccentricity, e, influence stability. [4,9,33-3S) The

instability of the collinear libration points as determined in the

circular problem for all the values of mass parameter persists for the

elliptic problem; an analysis of the collinear points shows instability

for any combination of the values of both p and e.

The results of a linearized stability analysis regarding the

effects of eccentricity and mass ratio on the linear stability of the

triangular points have been published by Danby 341 and then later by
(3S]Bennett s . Both Danby and Bennett have numerically generated graphic

depictions of the linear stability region in the p-e plane. For the
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eccentricity in the Sun-Earth+Moon ER3BP, the value of jp which enuz II

linear stability is only slightly less than Routh's value (decreased

approximately one percent). An interesting aspect of the p-e stabilil,,

region is that a range of values of p greater than Routh's value ai..

defines a region of linear stability for a specific range of values cl

e less than .3143.

3. Construction of Bounded Collinear Libration Point Orbits

The initial goal in the process of generating bounded orbits near

a collinear (unstable) libration point is to avoid exciting the

unstable mode associated with the linearized motion. The meteoric dust

particles that may be orbiting near Lagrange point L in the Sun-Earth2

system could only linger near that point if they arrive with the

"correct" initial position and velocity states relative to L . Tho2

"correct" initial conditions will only (primarily) excite the stable

modes associated with the linearized motion and not (or minimally)

excite the unstable mode. The degree to which the unstable mode is

excited will determine the length of time that the dust particles

linger near L . The general solution to the harmonic equation (2-77)
2

is written

7(t) = B cos(pt) + B sin(t) (2-81)
1 2

where BI and B are constants of integration, with values determined b/12

initial conditions, and v = (B) /2 . The coupled in-plane equationi

have eigenvalues of' the form iA, -iA, 7, -71 for A>O and ij>O where

i = (-1)112. They, therefore, yield solutions

(t) = A e + A 2 e + A cos(At) + A sin(At), (2-82)
1 2 3 4
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-C A e + C A e + C A cos(At) - C A sin(At) (2-83)
11 1 2 2 4 2 3

where

C - - (1 + 2B - 2), C = - (1 + 2B + A ) (2-84)1 2
27) 2A

and A1, A, A3, A4 are constant coefficients, dependent on the given

initial conditions. For bounded motion, the coefficient A must be1

zero. For both periodic and quasi-periodic motion, A2 must also be

zero. These two restrictions eventually lead to two equations that the

initial conditions must satisfy in order to produce a linear solution

that is bounded. The initial conditions are denoted Oo, f3 o (o*

The constant coefficients (A ,A2,A ,A ) can then be treated as

unknowns and expressed in terms of the initial conditions. Both A and1

A will be zero if(
4
)

2

A = F I0 + F (3 + F -cc 5 (3 = 0 (2-85)1 1 0 2 0 3 0 0

A2 = FI 0 - F2 130 - F3 ao - .5 3o =0 (2-86)

where

AC2 _ -X
F- ; F- , and F,= .5 C . (2-87)1 23 2

2 (2C-1 2 ( A1)

When equations (2-85) and (2-86) are satisfied, the sinusoidal

solutions to the linear equations (2-75), (2--76), and (2-77) can be
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written in more compact form (using trigonometric identities) as

a(t) = -A cos(At + €), (2-89)
x

13(t) = C A sin(At + 4), (2-90)2 x

A sin(vt + @), (2-91)z

A = (A2 +A 2  1/2, (2-92)
x 3 4

A = (B2 + B2 )1/2, (2-93)
z 1 2

tan(O) = - (A / A3), (2-94)
4 3

tan(O) = (B1 / B2). (2-95)
1 2

The linear solution can be very useful in developing a higher-

order approximation to the actual nonlinear trajectory. The motion

represented by the linearized solution as it appears above will be

quasi-periodic since A and v are, in general, not equal. They are,

however, of the same order of magnitude for the problem of interest.

Periodic motion can be constructed by modifying equation (2-77) to
117}

force a solution with equal In-plane and out-of-plane frequencies:
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a = 2 3 + (2B+1) a (2-96)

= (2-B)g - 2 a (2-97)

+ X2T 0. (2-98)

2

Equation (2-98) is derived by adding (A - B)T to the left-hand

side of equation (2-77); the addition of this term is compensated for

by using the higher-order terms in the analytic approximation.

Specifically, periodic linear motion can be obtained if the in-plane

(A ) and out-of-plane (A ) amplitudes of the motion are related in such
x z

a way that allows nonlinear contributions (higher-order terms in the

analytic approximation) to the system to produce eigenfrequencies that
(17]

are, in fact, equal. The resulting linearized periodic equations

would be of the form

aft) = -A cos(At + ) (2-99)
x

9(t) = C A sin(At + #) (2-100)2x

=(t) A sin(At + j). (2-101)z

The third-order analytic representation is used in this work to

provide the initial model for the trajectories. The method of

successive approximations, using the lizearized solution as the first

approximation to the nonlinear orbital path, and the method of dual

time scales are used to derive the third-order result. 1s16,25 The

method of successive approximations is used to generate an asymptotic

series in an appropriately small parameter. (The square root of the

eccentricity of the primary orbit, that is the orbit of the Earth-Moon
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barycenter about the Sun, is the small parameter used here.) Ti,

method of dual time scales is used to convert the system of ordinai

differential equations into a system of partial differenLial equationt

In general, the method of multiple scales allows the various nonlinc,'

resonance phenomena to be included in the approximate analytic soluti,.r.

and provides a method to remove secular terms. (Here, "secular" refer:

to terms that include the time variable and is derived from the French

"siecle" meaning century.)

The analytic solution of Richardson and Cary 25]  for the

Sun-Earth+Moon ER3BP has been derived to fourth order, but the third-

order approximation is found to be sufficient for this

research. [12,26-301 A numerical integration algorithm, using a

differential corrections procedure that is designed to adjust the first

guess as obtained from the analytic approximation, can then be used to

numerically generate the orbit of interest. A method developed by

Howell and Pernicka 12,26-301 is used here to generate the orbital

paths. Their method initially employs the approximate analytic

solution to compute target points. A two-level (position matching then

velocity matching), multi-step differential corrections algorithm is

used to construct a numerically integrated, bounded trajectory that is

continuous in position and velocity. A solar radiation pressure model
[311

developed by Bell is also incorporated in the numerical integration

procedure.

The method of Howell and Pernicka, including solar radiation

pressure, uses an initial analytic guess that represents a halo orbit

or, alternatively, a considerably smaller Lissajous path. The

higher-order terms tend to slightly alter the first-order periodic or

quasi-periodic path. Consequently, the initial target path for a halo

orbit will generally not be precisely periodic. The two-level,

multi-step differential corrections procedure then adjusts the initial

analytic target orbit and, therefore, will compute a halo-type orbit

that is nearly (but not exactly) periodic.
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4. The Reference Paths Generated for This Work

An original goal of this research was to compare orbit

determination error analysis results and station-keeping costs for

Lissajous and halo orbits. Precisely periodic halo orbits exist in the

CR3BP. They also exist in the ER3BP, but, in the ER3BP, they are

multiple revolution trajectories with periods much longer than those of

interest here. Nearly periodic orbits are more practical in the ER3BP

and are much more likely to be used In mission planning; therefore, the

goal here should be slightly modified to be the comparison of Lissajous

and "halo-type" orbits. The general shapes of the three-dimensional

halo-type and Lissajous orbits can be seen by plotting three

orthographic views of each orbit, using the tabular data from the

numerical integration routine. Figure 2-4 depicts three orthographic

views of point plots for the Lissajous orbit used in this research.

Figure 2-5 contains three orthographic views (on a slightly different

scale) of the considerably larger halo-type orbit to be used later in

this work. (Note that, in general, the amplitude ratio for Lissajous

trajectories is arbitrary. In halo orbits, however, constraining the

amplitude ratio results in equalized frequencies for in-plane and

out-of-plane motion.) The orbits are depicted in the rotating

reference frame centered at L1

Both orbits are clearly not periodic; a Lissajous orbit is often

called a quasi-periodic path, and these two orbits could clearly be

termed quasi-periodic or Lissajous paths. The major difference between

the orbits is the larger size of the halo-type orbit; however, other

differences are also present. The maximum x and y excursions of the

halo-type orbit are approximately four times as large as those of the

Lissajous path. Furthermore, the direction of motion (clockwise versus

counterclockwise), as viewed in the y-z orthographic depiction, is

different for the two orbits used here. The direction of motion on the

halo-type orbit is counterclockwise in the y-z depiction; the direction

of motion is clockwise in the y-z depiction for the Lissajous path.

(Both orbits include clockwise motion in the x-y depiction.)
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Figure 2-4. Three Orthographic Views of a Lissajous Orbit.
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Figure 2-5. Three Orthographic Views of a Halo-Type Orbit.
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The two orbits can also be differentiated in terms of t'"

direction of the maximum z excursion in the x-z depiction. If t h

maximum z excursion is in the positive z direction, the orbit can be

termed a member of a "northern family" of orbits. When the maximum .-

excursion of the orbit is in the negative z direction, the orbit is

termed a member of a "southern family" of orbits. In the x-z

orthographic depiction, the smaller (Lissajous) path can be seen to be

a member of a northern family of orbits, while the halo-type orbit is a

member of a southern family of orbits.

The differences in the paths, outlined in the preceeding

paragraphs, are the consequences of the initial conditions selected for

the numerical integration of the trajectory. The initial conditions

used for computation of the orbit near libration point L determine the1

related characteristics of direction of motion in the y-z plane and the

family of orbits (northern or southern) to which it belongs.

CONCLUSION

The restricted three-body problem is an important and interesting

area of research. The Sun-Earth+Moon ER3BP, in particular is currently

an area of vital research attention. The addition of solar radiation

pressure in the Sun-Earth+Moon ER3BP alters the locations and the

conditions for linear stability of the Lagrange points. Including

these solar effects improves the accuracy of the dynamic model, but

there are also additional, related benefits. Simulations used to

calculate expected tracking errors and the cost of maintaining th:

spacecraft near the unstable orbits can now also include uncertainty in

this solar radiation pressure force. The addition of this real

uncertainty will, in turn, improve the accuracy of further studies

conducted in relation to future spacecraft missions.
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